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Entity & Relation in Scientific Documents

• ‘The generalized LR parsingMethod is enhanced in this 
approachGeneric.’

• Relation(generalized LR parsing, approach) = Used-for.

• Named entity recognition (NER): Extraction of entities, i.e., entity 
mentions and their types.

• Relation extraction (RE): Extraction of the relation between entity 
pairs. 



Why NER and RE?
• Scientific output roughly doubles every 9 years.
• Automated reading & analysis of papers is the 

need of the hour.
• Requires NER and RE.
• Useful in knowledge graph construction, entity 

search, question answering, etc.

Nature News Blog, 2014.



Literature Review

• Research on NER and RE has been around for many years.
• Focus on NER and RE from scientific documents is relatively recent.
• Notable initiative:

• Semeval-2018 Task 7: Semantic Relation Extraction and Classification in 
Scientific Papers. [15]

“… The purpose of the task is to automatically identify relevant domain-
specific semantic relations in a corpus of scientific publications. …”



Literature Review

• 2 approaches for NER & RE:
• Pipelined: NER followed by RE. Simple but does not use cross-dependency.
• Joint: NER and RE formulated as a joint task with a global optimization 

objective. Uses inter-connection between tasks. But can propagate error.
• Most NER methods [2,3,12,13,25,30,31] label tokens with BIO/BILOU 

tags.
• Our method is inspired by SpERT [1] which labels spans instead of 

tokens. Hence, it supports overlapping entities. SpERT uses a 
pretrained transformer (BERT) and shallow classifiers on top of it.

• None of these methods use POS tags. Neither they use the predicted 
entity types for relation extraction.



Problem Definition

• Input: Sentence D containing tokens {d1, d2, … dn}.
• Let si denote a span of tokens from D, and S denote all possible spans in D. 

• Let 𝜉𝜉 denote a set of pre-defined entity types.
• NER: For each span 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆 , predict an entity type 𝑒𝑒 𝑠𝑠𝑖𝑖 ∈ 𝜉𝜉 ∪ ∅ where 

{∅} denotes 𝑠𝑠𝑖𝑖 is not an entity.

• Let 𝜆𝜆 denote a set of pre-defined relation types.
• RE: For each pair of spans 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆, 𝑠𝑠𝑗𝑗 ∈ 𝑆𝑆, predict a relation type 𝑟𝑟 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗 ∈
𝜆𝜆 ∪ ∅ where {∅} denotes 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 do not share a relation.



Proposed Approach: SpERT.PL

1. Pretrained Transformer (BERT): Generates embeddings of the input 
sentence and its constituent tokens.

2. POS Encoder: ScispaCy generates POS tags of tokens. POS embedding 
matrix converts them embeddings.

3. Fusion Module: Concatenates BERT embeddings of tokens with their POS 
embeddings.

4. Entity Classifier: Entity representations are formed from every sequence 
of k ≤ 10 consecutive tokens and classified by a shallow feed-forward 
neural network (FFNN), which is the entity classifier. 

5. Relation Classifier: Spans not predicted as entities are discarded. For 
every pair of remaining spans, representations of relations are formed, 
incorporating embeddings of the predicted entity logits, and classified by 
a shallow FFNN. Relations can be asymmetric.

Addition over SpERT [1]: (a) POS 
tags for NER & RE, (b) Predicted 

entity type Logits  for RE.



Proposed Approach: SpERT.PL

Code: https://github.com/dksanyal/SpERT.PL



Dataset: SciERC

• 500 abstracts of AI papers.
• 6 scientific entity types: Task, Method, Metric, Material, Other-

Scientific-Term, and Generic.
• 7 relations:  Compare, Conjunction, Evaluate-For, Used-For, Feature-

Of, Part-Of, and  Hyponym-Of
• #Sentences: 2,687.
• Training subset: 1,861 + 275 = 2,136 sentences
• Test subset: 551 sentences



Dataset: ADE

• 2 entity types: Adverse-Effect and Drug.
• 1 relation: Adverse-Effect.
• #Sentences: 4,272; from medical reports.
• #Relations: 6,821 relations.
• Used 10-fold cross validation.
• 2 cases:

• With overlap: all entities and relations are retained.
• Without overlap:  around 120 relations with overlapping entities (e.g., 

`lithium' is a drug included in `lithium intoxication') are removed.



Implementation Details

• Pretrained transformer for SciERC: SciBERT
(scibert_scivocab_cased)[2]

• Pretrained transformer for ADE: SciBERT (scibert_scivocab_cased), 
BioBERT (biobert-base-cased-v1.1)[3]

• Dimension of POS embedding = Dimension of span width embedding 
= 25

• Trained for 20 epochs with Adam optimizer.
• Sigmoid activation threshold in relation classifier = 0.4
• #Negative samples = 100 per sentence.
• Training batch size = 10. 

https://huggingface.co/dmis-lab/biobert-base-cased-v1.1


Evaluation Metrics

• NER: An entity is considered correct if the entity type and span are 
predicted correctly. 

• RE: Given two text spans, the model also performs RE. Correctness 
defined in two ways: 

• Strict RE: Relation type and the two related entities (both span and entity 
type) must be correct. 

• Boundaries RE: Relation type and only the spans of the two related entities 
must be correct. 

• Report micro-average for SciERC, both micro- and macro-average for 
ADE, and only strict RE for ADE. (Since only one relation occurs in 
ADE, the averaging method for RE does not matter.)



Results: SciERC

Performance on SciERC. Micro-average scores are reported.



Results: ADE

Performance on ADE. ∗indicates that the corresponding paper does not state if NER performance is micro-
average ormacro-average, though we use the micro-average columns for these cases.



Results: Ablation Study



Conclusion

• Proposed a deep neural model called SpERT.PL for entity and relation 
extraction from scientific documents. 

• POS information and predicted entity logits boost the classification 
performance. 

• Future work: 
• Does dependency parse of the sentences improve classification accuracy?
• How is the performance on other datasets?
• How do NER & RE impact other downstream tasks?
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